• About

Questions Are Power

Questions Are Power

Monthly Archives: August 2016

The problem of difference

19 Friday Aug 2016

Posted by nightingale108 in Questions in Logic

≈ 1 Comment

My daughter was counting hooks in a line, but she did something interesting. As she counted hooks, she counted the spaces between hooks, so that the next space had the same number as the previous hook. Perhaps the ordinary way to think of the space between hooks is the same—as zero—that doesn’t change the count, but she felt, quite unprompted by me, that each space was unique in its place between 1 and 2, 2 and 3, etc—That it had an identity. Normally identity in math is denoted with “=”. Expressing the identity of 1 is done by writing “1=1” or Screen Shot 2016-08-19 at 2.28.46 PM.png. A space is the opposite of an object, but the difference between hook 1 and hook 2 could be thought to have an identity, because it can be identified with its context between hook 1 and hook 2, for example, and could be written  Screen Shot 2016-08-19 at 2.27.32 PM. It was in Plato’s The Sophist that it was offered that not-being be the spaces or differences between beings. The inequality, or difference, between 1 and 2, Screen Shot 2016-08-19 at 2.27.32 PM, or between 2 and 3 Screen Shot 2016-08-19 at 2.29.56 PM.png are such spaces.

I am contrasting a definition of number as a difference with a common belief that a number is a class or likeness of members. Normally the number three is essentially a set of three members, where the members of the set could be any three things we wish to collect or associate. However, we run into difficulty when five year old children count spaces instead of objects. What do the spaces have in common, how can they be identified, except as differences between objects? And in that case, how are we to deal with the idea that three “spaces” share a likeness, when all they are is purely a difference?

The point of this is to argue that different differences (or inequalities) are different from each other. Put simply

Screen Shot 2016-08-19 at 2.26.22 PM

As argued in a previous post (https://questionsarepower.org/2015/01/31/degrees-of-difference/), the difference between 1 and 2 is different from the difference between 2 and 3, even though 2-1=1 and 3-2=1, we have to keep the context of the first and second subtractions with their results.

To return to that argument briefly, observe how the difference between age 1 and 6 is much greater than the difference between age 40 and 45, even though the distance between each set is 5. Further, one difference between and circle and a square is that the square can be triangulated while the circle cannot, but this difference can be turned into a similarity between a square and a strict rectangle. This would suggest that a difference “=” a likeness. Back to our inequality above, that we could denote the first difference “2-1” with Screen Shot 2016-08-19 at 2.27.32 PM,and the second difference “3-2” with Screen Shot 2016-08-19 at 2.29.56 PM.png,. If we were to lose these contexts and allow both to be reduced to the same “Screen Shot 2016-08-19 at 2.33.44 PM,” contradictions would follow. For example if we were to lose the contexts in the inequality

Screen Shot 2016-08-19 at 2.26.22 PM

by writing simply

Screen Shot 2016-08-19 at 2.33.02 PM

In English, the idea that something “does not equal Screen Shot 2016-08-19 at 2.33.44 PM”, reduces to “=”, so we replace two of the “not-equals” with one “equals”:

Screen Shot 2016-08-19 at 2.34.17 PM

Now, what is Screen Shot 2016-08-19 at 2.33.44 PM equal to?

Since we already know Screen Shot 2016-08-19 at 2.33.02 PM, it cannot be that Screen Shot 2016-08-19 at 2.35.11 PM.png. That would be a contradiction, but the alternative:

Screen Shot 2016-08-19 at 2.35.41 PM

Is also a contradiction.

So we cannot lose our context for differences, and must be aware of the difference between differences. The symbols “Screen Shot 2016-08-19 at 2.33.44 PM” and “1”  are misleading because they erase their contexts including if “1” is a difference or identity. This means, apart from the current context-wanting misuse of the inequality sign, that difference, variation, diversity are not universal, they cannot be generalized. Instead difference is always special to its context. Difference is not a neutral term, because it always implies a discrimination between particular persons, places, or things.

Complementary to this vein, and in defense of its pedagogy, an aging Augustus De Morgan wrote an essay in which he tried to generalize the “=”. (Augustus De Morgan, “On Infinity and on the Sign of Equality,” Trans. Cambridge Phil. Soc. 1871, II:145-189.) The problem he faced was:

screen-shot-2016-11-23-at-3-12-32-pm

On generalizing and replacing 0 with x we run into some trouble. De Morgan’s philosophy and historicity of mathematics was such that he felt great mathematical progress was found in “mangled” (Pickering 2006) algebra. (Richards, 1987) The trouble was not that the steps were incorrect, but how to interpret the steps so that the symbols were about something. Understanding a generalized = is one thing, and it may be that the Screen Shot 2016-08-19 at 2.33.44 PM can be generalized as above and then interpreted so that it is still about something, but I’d contend that the nature of inequality is that is is the opposite of generalization. Generalization, like an umbrella or a set, asserts a higher likeness within its domain. To assert a set A, for example, in which each of its members had some difference or other with the other members, would be like the power set of everything. Finding a contradiction or two in this set (of course it would contain Russell’s Paradox) shouldn’t be too hard.

So I’ll do it here: the set A, whose members have some difference from all the other members of the set, must contain itself (A in A), since A, the set, is not like any other member of A. This means that the property that defines the set and that the members of A share, that of being different, is not shared by any member of the set. -><-

Read more here: https://questionsarepower.files.wordpress.com/2016/03/many_roads_from_the_axiom_of_completenes-2.pdf

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Subscribe

  • Entries (RSS)
  • Comments (RSS)

Archives

  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • March 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • October 2019
  • September 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • January 2018
  • October 2017
  • September 2017
  • June 2017
  • May 2017
  • April 2017
  • November 2016
  • October 2016
  • August 2016
  • July 2016
  • April 2016
  • June 2015
  • March 2015
  • February 2015
  • January 2015
  • November 2014
  • September 2014
  • August 2014

Categories

  • Questions in Logic
  • Questions in Mathematics
  • The more technical stuff

Meta

  • Register
  • Log in

Blog at WordPress.com.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
  • Follow Following
    • Questions Are Power
    • Already have a WordPress.com account? Log in now.
    • Questions Are Power
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...