• About

Questions Are Power

Questions Are Power

Monthly Archives: November 2016

Synthesis of Vagueness and Logic

17 Thursday Nov 2016

Posted by nightingale108 in Questions in Logic

≈ Leave a comment

by Andrew Nightingale, November 14th, 2559

CC: Dr. Khajornsak Buaraphan, Dr. Parames Laosinchai, Dr. Patchayapon Yasri

The problem with Heideggers “enframing” attempt—that science enframes nature and in any frame there the phenomena are still vague—is that certain kinds of vagaries do not entail paradigm shift. “Though discovering life on the moon would today be destructive of existing paradigms (these tell us things about the moon that seem incompatible with life’s existence there), discovering life in some less well-known part of the galaxy would not.” (Kuhn 1970, p 95) However, some vagueness does warrant paradigm shift, because “Ambiguity [between terms and the world], … turns out to be an essential companion of change.” (Feyerabend 1999, p 39)

Precision, on the other hand, is not an argument in favor of a theory because “In fact, so general and close is the relation between qualitative paradigm and quantitative law that, since Galileo, such laws have often been correctly guessed with the aid of a paradigm years before apparatus could be designed for their experimental determination.” (Kuhn 1970, p 29) So that the measurements are predicted with intense precision, and then the experiment carried out is an elaborate, highly overdetermined one that has only one possible interpretation within the paradigm.

Vagueness is apparent to the naked eye, but it is traditionally opposed to what can be grasped rationally. “In general, Leibniz had followed the other great rationalists in interpreting perception as a confused form of thinking. Like Descartes, he had treated the deliverances of the senses as sometimes clear but never distinct.”(Walsh; Edwards Ed. 1972, p 307) However, vagueness is a clear and distinct concept, and it seems that it also is in complete agreement with the “deliverances of the senses.” Thus, in the sense of mathematics that Whewell and others held, vagueness is a truly mathematical one, that is,

“…in mathematics there was no difference between objective reality and subjective knowledge; the human mind was completely in tune with external fact.” (Richards 1980, p 362) Rational thought and empirical observation are brought together into one concept: vagueness. This old idea of mathematical truth has changed drastically now. With Godel’s theorems, it became clear that an absolutist (that is mathematics is absolutely true and unchanging) view became untenable. One stronghold of the old sense in which mathematics is true (Whewell’s) can be found in the mathematician Brouwer’s intuitionism. According to Brouwer (and Kant before him), the experience of time is accessed to fill the empty formalisms of mathematics, giving it meaning and truth. Vagueness is another source of mathematical truth. It may be that vagueness between two things is present in Brouwer’s intuition of a “twoity,” the beginning of intuitionist arithmetic.

What do I mean by vagueness? The ancient representation of vagueness is the problem of the heap of sand. When you have a heap of sand, you have a relatively safe inference that if you take one grain from a heap, then you will still have a heap. As the story goes, eventually taking grains of sand will show this if, then statement to be faulty because you will no longer have a heap of sand. Why does classical “if, then” fail us here? There is an analogue between the heap of sand example and with the calculation of a real number according to a rule. Also, this question gains importance when reflecting that “Logical consequence [the if, then] is the central concept in logic. The aim of logic is to clarify what follows from what. – Stephen Read, Thinking about Logic [99]” (As quoted in Beall, Restall 2006, Kindle Edition) According to Beall and Restall, logical consequence can be clarified in more than one way, giving rise to more than one equally valid (if applied in different situations) formulation of logical consequence. “We must reconcile ourselves to the fact that every precise definition of [logical consequence] will show arbitrary features to a greater or less degree.” (Tarski as quoted in Beall, Restall 2006)” Additionally probability theory is not a solution to the vagueness of logical consequence, because

…probability theory might provide a canon for evaluating degrees of belief, … Nonetheless, probability theory cannot be a complete answer here, for we also make assertions and denials (and hypotheses and many other things besides), and these may also be evaluated for coherence, using the norms of deductive logic. In particular, we hold that it is a mistake to assert the premises of a valid argument while denying the conclusion… (Beall Restall 2006, Kindle Edition)

The solution to the vagueness of logical consequence, rather, lies in logical pluralism. Logical consequence brings true conditions to their true conclusions, but logical consequence itself is conditioned, and ultimately forms the structure of what can be intelligibly conditioned. Since phenomena are inherently vague, and logical consequence is vague until arbitrarily made precise, there is no clear difference between form and substance, ideas and things.

Read more: https://questionsarepower.org/2016/08/19/the-problem-of-difference/

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

references

Beall, J. C., & Restall, G. (2006). Logical pluralism. Oxford: Clarendon Press.

Edwards, P., & Walsh, W. H. (1972). The encyclopedia of philosophy (2nd ed., Vol. 4). New York: Macmillan.

Feyerabend, P., & Terpstra, B. (1999). Conquest of abundance: A tale of abstraction versus the richness of being. Chicago: University of Chicago Press.

Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: University of Chicago Press.

Richards, J. L. (1980). The art and the science of British algebra: A study in the perception of mathematical truth. Historia Mathematica, 7(3), 343-365. doi:10.1016/0315-0860(80)90028-2

Losing the Language-Game

11 Friday Nov 2016

Posted by nightingale108 in Questions in Logic

≈ Leave a comment

Wittgenstein argues that mathematics is a language game, that is not only based on language but on “forms of life.” And forms of life are rules of the game that are, perhaps socially constructed, but definitely without doubt. They are given somehow and from who knows where. Proving a theorem is to invent a rule that is also without doubt,

“What is unshakably certain about what is proved? To accept a proposition as unshakably certain—I want to say—means to use it as a grammatical rule: this removes uncertainty from it.” (Wittgenstein 1978, 170)

Proving adds to or informs our forms of life. This means that forms of life are created… can they be destroyed? I’m saying perhaps we built the wrong forms of life, perhaps there is still a nagging wonder about the things supposedly settled. And the question begins the process of changing our forms of life. In my first post I proposed bringing in the “?” into mathematical language. As it was laid out in that post, https://questionsarepower.org/2014/08/ the “?” operation would introduce a controlled retreat from mathematical logic. I showed how the “?” can free us from the Liar Paradox, a language game that is an endless cycle in search of a truth value.

The axiom of completeness is exactly such a form of life that should be questioned. It metaphorically closes off the possibility of leaping from moment to discrete moment. The axiom of completeness is like a poetic spell on the mind that prevents natural movement through time, since moving through time continuously, with out the possibility of a leap, generally means “downhill.”  Real analysis is a losing language-game.

I have argued against the “least upper bound;” Dedekind cuts are hardly different from this notion, but it shows the cunning of mathematicians to push their agenda: “Everything is number” by using essentially the same argument in so many different ways. Dedekind cuts are sets of rational numbers with no maximum, that is, if r is in the “cut” called A, then there exists a rational “s” such that r<s, s in A, is similar to saying the number generated by adding another digit to the decimal expansion of r is also in A.

Cuts essentially assert a least upper bound (or the “…” in a decimal expansion) with judicious use of the “<” symbol; it is merely a rewording. Dedekind offered these “cuts” as real numbers and asserted that they exist.

In one of many analysis texts I’ve read,

“The real numbers were defined simply as an extension of the rational numbers in which bounded sets have least upper bounds, but no attempt was made to demonstrate that such an extension is actually possible. Now, the time has finally come. By explicitly building the real numbers from the rational ones, we will be able to demonstrate that the Axiom of Completeness does not need to be an axiom at all; it is a theorem! There is something ironic about having the final section of this book be a construction of the number system that has been the underlying subject of every preceding page…We all grow up believing in the existence of real numbers, but it is only through a study of classical analysis that we become aware of their elusive and enigmatic nature. It is because completeness matters so much…that we should now feel obliged—compelled really—to go back to the beginning…” (Abbot 2001, p 244, Emphasis mine)

Who is being compelled? The book is built so that you have to assume the Axiom of Completeness for a very long and arduous time before they get to the meat of the problem. More importantly, this quote shows the circularity of mathematics, from axiom to theorems back to axioms. Theorems are merely explicit parts of the axioms. With a shuffling of words the Axiom of Completeness turns into a theorem, but certainly the theorem is more explicit and involves more description of what the Axiom is, which is left for the very end of a book devoted to assuming the Axiom.

And how explicit is it really? The cuts are defined as any set of rational numbers with no maximum. Is that explicit? How many sets are like that? And there is an interesting example of a cut: take the set of rational numbers “r” such that screen-shot-2016-11-11-at-2-22-31-pm when r is positive, else r is in the set (call this set A). Compare with a similar set where screen-shot-2016-11-11-at-2-22-16-pm (B). This is exactly the sort of thing that mathematicians enjoy, the “almost false.” Dedekind cuts fail to distinguish these two sets, but Dr. Abbot continues with his claim that Dedekind cuts make real numbers explicit. Strangely enough, while here the difference between < and Screen Shot 2016-11-11 at 2.53.39 PM.pngmight not matter, elsewhere in the theorem of completeness it matters greatly. First of all many of the cuts can be distinguished by using < as in the set of any rational r < 2 , which is a cut, but rscreen-shot-2016-11-11-at-2-53-39-pm2 is not a cut since 2 is its maximum and 2 is in the cut. How to describe the cut where square-root of 2 is the least upper bound without this ambiguity? We can’t. Both the symbol square-root of two and  A,  involve algebraic operations without a clear (or even necessarily a single) solution (or lub). We can prove that square-root of 2 is not a rational number, but to say that, whatever square root of 2 is, it is a least upper bound of A is to forget that that is what we are trying to prove.

Now, lets look at the order of Dedekind cuts. For cuts A and B,

Ascreen-shot-2016-11-11-at-2-53-39-pmB is defined to mean AScreen Shot 2016-11-11 at 3.07.27 PM.pngB.

Let A be the set defined by screen-shot-2016-11-11-at-2-22-31-pm, is A a strict subset of B, the set defined by screen-shot-2016-11-11-at-2-22-16-pm? It certainly seems like it ought to be. It can be reasoned that A contains less (of what?) than B. We want our different algebraic expressions to have distinguishable numerical values, that is ultimately the motivation for the  real numbers, but in this case we don’t have that. The choice of screen-shot-2016-11-11-at-2-53-39-pmin the definition is of course very careful. If the definition used < we would have a potential counter example. Figuring out the exact difference in certain cases between “=” and “<” is swept under the rug. Luckily mathematicians can add definitions to counter this particular example, but how many other examples of vagueness are there? The definition of a Dedekind cut is so general (not explicit) that there may be many other problems.

Since we don’t know that B is a cut, we cannot claim that it is a real number nor that it represents a least upper bound. How do we know that A is a cut? We know that either way square-root of 2 is not a rational number. We know that there is no least upper bound “next” to B, that if a number is adjacent to square-root of 2, they are so close as to be the same number. How, then, can square-root of 2 be explicit, how do we know that there is a unique and determinate answer to square-root of 2? The truth is, vagueness sets in as r in B get closer to B’s upper bounds. The upper borderline is vague, like any empirical borderline, but somehow we are compelled into believing there is a unique and determinate upper bound to B.

“Wittgenstein argues that logical necessity—be it computing an algorithm, proving a theorem, drawing a deductive inference, or whatever—concerns the following of a rule. Rule following raises the issue of the compulsion to reach a conclusion that is fixed and, if not predetermined, then at least unique and determinate” (Ernest 1998, p 80) Assuming there is a unique and determinate square-root of 2 makes the expression of such a view merely a language-game, not anything profound. The only way to have a philosophical thought about the language game of arithmetic is to resist this compulsion, and with that act, the entire edifice of real numbers crumbles.

Dedekind cuts are based on a rule for determining a very large infinity of sets; so is the square-root of 2 a large calculation. Wittgenstein wrote about rule following, saying that “What you are saying, then, comes to this: a new insight—intuition—is needed at every step to carry out the order..a new decision was needed at every stage” (Wittgenstein 1953, 75). The compulsion for a student to follow a rule such as calculating the value of square-root of 2 is never fully understood, because of the decision making process, we think we understand the rule and give up calculating, but if we were driven to continue calculating square-root of 2, doubts would inevitably pop up, perhaps merely because we have a life to live besides carrying out this rule, but the objections that pop up will be well informed ones, by someone who has done a lot of exploration into the rule. In Wittgenstein:

“…following a rule and agreeing (perhaps implicitly) to its conventional underpinnings…also involves a decision that the new application can be legitimately be subsumed under existing rules, for rules underdetermine their applications.”(Ernest 1998, p88)

We have invented a substance ‘the real numbers’ that is so well ordered that it can obey algebraic rules without any decision. Thus the decision to adopt the ‘real numbers’ is a very important and determining one. Feyerabend argued that a proof resembles a tragedy. It is internally consistent and inevitable. Comedy, on the other hand, is the stuff of continuity. And the place comedy had in the Greek world was:

Everything commonly realistic, everything pertaining to everyday life, must not be treated on any level except the comic…As a result the boundaries of realism are narrow. And if we take the word realism a little more strictly, we are forced to conclude that there could be no serious literary treatment of everyday occupations and social classes…of everyday scenes and places…everyday customs and institutions…of people and its life. (Auerbach 1946, p 31)

Reducing comedy to tragedy has dire consequences for the reducing culture.

Dedekind played on words with “Dedekind cuts,”  Now, what does he mean that a “cut” exists? Does he mean the knife that cut, or the space between the two parts that were once one? Or does he mean the ground on which the surgery took place, the “operating table,” as Foucault put it?

If he means the space created by a cut, I have already mentioned the trouble with different “cuts”—that different cuts are different from each other, that there exist at least two different real numbers. This means that Screen Shot 2016-08-19 at 2.33.02 PM, and undermines the notion of identity in mathematics.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Subscribe

  • Entries (RSS)
  • Comments (RSS)

Archives

  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • March 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • October 2019
  • September 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • January 2018
  • October 2017
  • September 2017
  • June 2017
  • May 2017
  • April 2017
  • November 2016
  • October 2016
  • August 2016
  • July 2016
  • April 2016
  • June 2015
  • March 2015
  • February 2015
  • January 2015
  • November 2014
  • September 2014
  • August 2014

Categories

  • Questions in Logic
  • Questions in Mathematics
  • The more technical stuff

Meta

  • Register
  • Log in

Create a free website or blog at WordPress.com.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
  • Follow Following
    • Questions Are Power
    • Already have a WordPress.com account? Log in now.
    • Questions Are Power
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...