• About

Questions Are Power

Questions Are Power

Monthly Archives: September 2017

Mathematical Relationship between Logical Pluralism and Vagueness

23 Saturday Sep 2017

Posted by nightingale108 in The more technical stuff

≈ Leave a comment

There can be a pluralism of logics because Screen Shot 2017-09-23 at 10.55.59 PM.png whereScreen Shot 2017-09-23 at 10.57.58 PM is classical negation. This can be justified because  “1 Screen Shot 2016-08-19 at 2.33.44 PM 2″ and “1 is not 2” are basically the same statement. However “not 2” has different meanings in different logics, so 1 Screen Shot 2016-08-19 at 2.33.44 PM 2 means something different in paraconsistent logic (We’ll use DeCosta’s C1), we mark this difference with 1 Screen Shot 2017-09-23 at 10.58.22 PM 2, and claim that the difference between classical negation (Screen Shot 2017-09-23 at 10.57.58 PM) and paraconsistent negation (Screen Shot 2017-09-23 at 10.58.22 PM) is  marked Screen Shot 2017-09-23 at 10.58.10 PM. Hence Screen Shot 2017-09-23 at 10.55.59 PM.png.

I mentioned in a previous post that we cannot generalize this statement into Screen Shot 2016-08-19 at 2.33.02 PMbecause it is a contradiction. Nevertheless, a sense in which Screen Shot 2016-08-19 at 2.33.02 PMis true is the sense Screen Shot 2017-09-23 at 10.55.59 PM.png.

Now, vagueness is the situation where it is not clear if 1 Screen Shot 2016-08-19 at 2.33.44 PM 2. To illustrate, take this curve: graph_avg_weight1

here is vagueness on whether we have two or one “heaps”. This thing could be 2 or it could be 1 and so in a sense 2=1. How is this handled by logical pluralism? Paraconsistent logic would allow that A: “1 is not 2” and ~A: “1 is 2” has a sense in which it is true, while classical logic would explode. The reason for this is entirely based on the difference in negation. C1 creates a new sense each time a true possibility is negated, making the negation of a possibly true row in the truth-table have two senses, one in which the negation is true, another in which the negation is false.

(A Screen Shot 2017-09-23 at 10.57.58 PM ~A) Screen Shot 2017-09-23 at 10.58.10 PM (A Screen Shot 2017-09-23 at 10.58.22 PM ~A)

The point is that how you handle negation changes how vagueness is handled (or not handled). A difference in negation also gives rise to an entirely different logic. Vagueness can be described completely as a failed distinction/negation, so that even though we want “1 is not 2” vagueness makes this distinction fail. A different negation yields a different way distinction fails, but no logic “solves” vagueness completely. This is the mathematical relationship between vagueness and logical pluralism.

This may be made clearer with another example. Vagueness is the situation when a distinction fails, which can be described by the failure to distinguish = from Screen Shot 2016-08-19 at 2.33.44 PM, so Screen Shot 2017-09-28 at 1.30.38 PM.

Now for classical logic if vagueness renders 1 = 2 we can prove Screen Shot 2017-09-28 at 1.30.38 PM, likewise in paraconsistent logic there is no problem having Screen Shot 2017-09-28 at 1.30.38 PM as another non-explosive contradiction. this means in particular that Screen Shot 2017-09-23 at 10.57.58 PMScreen Shot 2017-09-28 at 1.34.47 PM and Screen Shot 2017-09-23 at 10.58.22 PMScreen Shot 2017-09-28 at 1.34.47 PM. Substituting, we get that things can get so vague we can’t tell the difference between Screen Shot 2017-09-23 at 10.57.58 PM and Screen Shot 2017-09-23 at 10.58.22 PM, in other words Screen Shot 2017-09-23 at 10.57.58 PM = Screen Shot 2017-09-23 at 10.58.22 PM. and from our previous statement Screen Shot 2017-09-23 at 10.55.59 PM.png we have Screen Shot 2017-09-23 at 10.58.10 PMScreen Shot 2017-09-28 at 1.34.47 PM and vagueness is now mathematically related to logical pluralism.

The symmetry between Completeness and Vagueness

10 Sunday Sep 2017

Posted by nightingale108 in The more technical stuff

≈ Leave a comment

The (Problem of the) Heap of Sand is the classical representation of vagueness, where you create an inference: if you take away a grain from the heap then it remains a heap. This is a good inference for a long time, but eventually breaks down due to the vagueness of what a heap is (eventually you will have taken so many grains away that it wont resemble a heap anymore). And you can’t even tell when the inference will break down, exactly. So, as you can see, vagueness has a very precise and non-vague formulation, something similar to this strange property of vagueness (that it is a clear and distinct concept, even though it is a concept about indistinctness) is common for mathematical concepts. That is, mathematical concepts are chosen and defined so that they contain the terms necessary to get round their own difficulties—their faults or cracks, as all concepts are imperfect. Example: “Completeness”.

The difference between vagueness and completeness, is:

1) that the term completeness is in direct opposition to the claim that every concept has a “fault” or “crack”, in this it is a “perfect” term. The definition of completeness, however, must be vague, because the terms used to define completeness all have cracks.

2) The definition of vagueness, by contrast, is perfect, but the term refers to an essential fault of all terms, and is always perceived. (perception is always vague) Vagueness is defined as how the if, then fails— The “heart of logic” (the paragon of precision) and the most reliable way to preserve truth. It is clear and distinct in its description of how the if, then fails. Since each of the terms in the definition of vagueness have cracks, the definition is precise.

The term vagueness refers perfectly to its referent because it is well defined as an indistinctness, the definition of completeness is vague because the term refers to something that can’t be perceived, a perfect whole.

Subscribe

  • Entries (RSS)
  • Comments (RSS)

Archives

  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • March 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • October 2019
  • September 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • January 2018
  • October 2017
  • September 2017
  • June 2017
  • May 2017
  • April 2017
  • November 2016
  • October 2016
  • August 2016
  • July 2016
  • April 2016
  • June 2015
  • March 2015
  • February 2015
  • January 2015
  • November 2014
  • September 2014
  • August 2014

Categories

  • Questions in Logic
  • Questions in Mathematics
  • The more technical stuff

Meta

  • Register
  • Log in

Create a free website or blog at WordPress.com.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
  • Follow Following
    • Questions Are Power
    • Already have a WordPress.com account? Log in now.
    • Questions Are Power
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...